

TD5

SÉRIES, DÉVELOPPEMENTS LIMITÉS.

Exercice 1 Convergence de séries.

Examiner la convergence des séries suivantes :

$$1. \sum_{k\geqslant 2} \frac{\ln(k)}{k}.$$

$$2. \sum_{k \ge 0} \frac{\sqrt{k}}{k+1}.$$

3.
$$\sum_{k\geqslant 1} \frac{k-2}{k^3+3k-\ln(k)}$$
.

4.
$$\sum_{k>1} (\ln n)^{-\ln n}$$
.

5.
$$\sum_{k \geqslant 1} \frac{e^{-\sqrt{k}}}{k}$$
.

6.
$$\sum_{k\geqslant 0} \sqrt[k]{k+1} - \sqrt[k]{k}$$
.

 $Indication: Trouver\ un\ \'equivalent\ du\ terme$ $g\'en\'eral\ avec\ l'IAF.$

EXERCICE 2 Développements limités.

Déterminer le développement limité d'ordre 2 au voisinage de x_0 puis calculer la limite proposée :

1.
$$f(x) = \frac{4e^{x-2}}{x^2}$$
 en $x_0 = 2$ puis $\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2}$.

En déduire que f est dérivable en $x_0 = 2$ et déterminer f'(2).

2.
$$g(x) = \frac{\ln(x)}{x}$$
 en $x_0 = 1$, puis $\lim_{x \to 1} \frac{g(x) + 1 - x}{(x - 1)^2}$.

Indication: se ramener en 0 par un changement de variable: $f(x) = f(2+h) = \dots$ et $g(x) = g(1+h) = \dots$

EXERCICE 3 EMLyon 2009 Exercice 1.

On note $f: \mathbb{R} \to \mathbb{R}$ l'application définie, pour tout $x \in \mathbb{R}$, par

$$f(x) = \begin{cases} \frac{x}{e^x - 1} & \text{si } x \neq 0\\ 1 & \text{si } x = 0 \end{cases}.$$

Partie I: Étude d'une fonction.

- 1. a. Montrer que f est continue sur \mathbb{R} .
 - **b.** Justifier que f est de classe C^1 sur $]-\infty,0[$ et sur $]0,+\infty[$, et calculer f'(x) pour tout $x\in]-\infty,0[\cup]0,+\infty[$.
 - c. Montrer que

$$\lim_{x \to 0} f'(x) = \frac{-1}{2}.$$

TD5 2

- **d.** Établir que f est de classe \mathcal{C}^1 sur \mathbb{R} et préciser f'(0).
- 2. a. Étudier les variations de l'application $u: \mathbb{R} \to \mathbb{R}$ définie, pour tout $x \in \mathbb{R}$, par

$$u(x) = (1-x)e^x - 1.$$

- **b.** Montrer que, pour tout $x \in \mathbb{R}$, f'(x) < 0.
- c. Déterminer les limites de f en $+\infty$ et $-\infty$, puis dresser le tableau de variations de f.
- **d.** Montrer que la courbe représentative de f admet une droite asymptote lorsque la variable tend vers $-\infty$.
- e. Tracer l'allure de la courbe représentative de f.

Partie II : Étude d'une suite récurrente associée à la fonction f.

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et, pour tout $n\in N$, $u_{n+1}=f(u_n)$.

- 1. Montrer que f admet un point fixe et un seul, noté α , que l'on calculera.
- **2.** a. Établir que, pour tout $x \in [0, +\infty[$, $e^{2x} 2xe^x 1 \ge 0$.
 - **b.** Montrer que, pour tout $x \in]0, +\infty[, f'(x) + \frac{1}{2} = \frac{e^{2x} 2xe^x 1}{2(e^x 1)^2}]$.
 - c. Montrer que tout $x \in [0, +\infty[, -\frac{1}{2} \leqslant f'(x) < 0]$.
 - **d.** Établir que pour tout $n \in \mathbb{N}$, $|u_{n+1} \alpha| \leq \frac{1}{2} |u_n \alpha|$.
- **3.** En déduire que pour tout $n \in N$, $|u_n \alpha| \leq \frac{1}{2^n}(1 \alpha)$.
- **4.** Conclure que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers α .
- 5. Écrire un programme en Scilab qui calcule et affiche le plus petit entier naturel n tel que $|u_n \alpha| < 10^{-9}$.

Partie III: Étude d'une fonction définie par une intégrale.

On note $G: \mathbb{R} \to \mathbb{R}$, l'application définie pour tout $x \in \mathbb{R}$, par

$$G(x) = \int_{x}^{2x} f(t)dt.$$

1. Montrer que G est de classe \mathcal{C}^1 sur \mathbb{R} et que, pour tout $x \in \mathbb{R}$,

$$G(x) = \begin{cases} \frac{x(3-e^x)}{e^{2x}-1} & \text{si } x \neq 0\\ 1 & \text{si } x = 0 \end{cases}.$$

- **2.** a. Montrer que pour tout $x \in [0, +\infty[$, $0 \le G(x) \le xf(x)$. En déduire la limite de G en $+\infty$.
 - **b.** Montrer que pour tout $x \in]-\infty, 0]$, $G(x) \leq x f(x)$. En déduire la limite de G en $-\infty$.
- 3. Dresser le tableau de variations de G. On n'essaiera pas de calculer $G(\ln 3)$.

EXERCICE 4

Dans tout l'exercice, on considère

• La fonction f définie sur $\mathbb{R} \setminus \{-1\}$ par

$$f(x) = \frac{x}{(x+1)^2};$$

• La fonction F définie sur $]-1, +\infty[$ par

$$F(x) = \int_0^x f(t)dt;$$

• La suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et, pour tout $n\in\mathbb{N}$ $u_{n+1}=f(u_n)$.

TD5 3

Partie I : étude de la fonction f

- 1. Déterminer les limites de f aux bornes de son ensemble de définition.
- 2. Déterminer les variations de f, présentées sous forme d'un tableau.

Partie II : Étude de la fonction F.

- 1. Justifier que F est bien définie sur $]-1,+\infty[$ et que F est de classe \mathcal{C}^1 sur son ensemble de définition.
- 2. À l'aide du changement de variables u = t + 1, montrer que pour tout x > -1,

$$F(x) = \ln(x+1) - \frac{x}{x+1}.$$

- 3. À l'aide d'équivalents, déterminer les limites de F aux bornes de son ensemble de définition.
- 4. a. Étudier la concavité de F. On montrera notamment que F admet un point d'inflexion dont on précisera les coordonnées.
 - **b.** Montrer que pour tout x > -1 et non nul, on a F(x) > 0.
- **5.** Rappeler les développements limités d'ordre 2 en 0 de $\ln(1+x)$ et de $\frac{1}{1+x}$. En déduire le développement limité de F à l'ordre 2 en 0.
- **6.** Préciser l'équation de la tangente à la courbe F en 0, et leurs positions relatives.
- 7. Représenter l'allure de la courbe représentative de F ainsi que, sur le même graphique, la tangente en 0.

Partie III : Étude la suite $(u_n)_{n\in\mathbb{N}}$.

- 1. Calculer u_1 et u_2 .
- **2.** Montrer par récurrence que pour tout $n \in \mathbb{N}$, on a $0 < u_n \leqslant \frac{1}{n}$.
- 3. En déduire la convergence de $(u_n)_{n\in\mathbb{N}}$ vers une limite à préciser.
- **4.** Pour tout $n \in \mathbb{N}$, on pose $v_n = \frac{1}{u_{n+1}} \frac{1}{u_n}$.
 - **a.** Montrer que pour tout $n \in \mathbb{N}$, on a

$$2 \leqslant v_n \leqslant 2 + \frac{1}{n}.$$

b. En déduire que, pour tout $n \in \mathbb{N}$,

$$2(n+1) \leqslant \frac{1}{u_n} \leqslant 2(n+1) + \sum_{k=1}^{n-1} \frac{1}{k}.$$

- **5.** a. Montrer que pour tout entier $k \ge 2$, $\frac{1}{k} \le \int_{k-1}^k \frac{dt}{t}$.
 - **b.** En déduire que

$$\sum_{k=1}^{n} \frac{1}{k} \leqslant 1 + \ln n.$$

- **6.** Montrer que $u_n \underset{n \to +\infty}{\sim} \frac{1}{2n}$.
- 7. En déduire la nature de la série $\sum u_n$.